Dielectric Communications: Advancing the frontier in broadcast communications for over seven decades. #### **Full System Solutions** Since our inception in 1942, we have considered ourselves a solutions oriented engineering company, priding ourselves on our depth of scientific experience and knowledge. Clients approach us with broadcast needs and we deliver full system solutions, jointly tasking with client engineering staff design technologically advanced systems. We design and manufacture full broadcast systems from the transmitter output to the tower top. ### A Culture of innovation spanning over seven decades. Dielectric's leadership in passive RF technologies is reflected in the expertise we offer and the recognition we've received: over 100 patents, 2 emmys for technical innovation, 4 NAB Pick hits, to name a few. Dielectric offers the customized support services and planning tools you need to build your television antenna from configuring a new antenna system, to acquiring knowledgeable insights into specific technical issues, Dielectric resources provide easy access to the assistance you needed. This includes customized support services, as well as planning tools to guide in the design. #### Call Us This fifth edition of our television planning guide details the systems and components we produce. Call us about your requirements or any of our broadcast products at 1-800-341-9678. Products contained in this catalog may be covered by one or more of the following patents: 6,917,264; 6,903,624; 6,887,093; 6,882,224; 6,870,443; 6,867,743; 6,816,040; 6,703,984; 6,703,911; 6,677,916; 6,650,300; 6,650,209; 6,617,940; 6,538,529; 6,373,444; 6,320,555; 5,999,145; 5,861,858; 5,455,548; 5,418,545; 5,401,173; 5,167,510; 4,988,961; 4,951,013; 4,899,165; 4,723,307; 4,654,962; 4,602,227. Additional patents are pending. Specifications subject to change without notice. | | Mounted Antenna Systems
UHF | | |------|--------------------------------|-----| | , | TFU Series | 3 | | | TU Series | 5 | | ١ | VHF | | | | TW Series | 14 | | | THV Series | 17 | | | TF Series | 19 | | l | UHF and VHF | | | | TUV Dualband Series | .20 | | | Stacked Arrays | .22 | | Side | Mounted Antenna Systems | | | l | UHF | | | | TFU Series | .25 | | | TFU-TC Series | .29 | | | TU Series | .33 | | \ | VHF | | | | TH Series | .31 | | | TLS-V Series | 34 | ## Top Mounted Antenna Systems—UHF #### **TFU Series GTH** - Single or adjacent channel top mount performance - Excellent frequency response across channel(s) of operation - Low VSWR - Full polycarbonate radome standard¹ - Higher power versions available - Elliptical and circular polarization options available - Available in 8 to 36 bay configurations 8.5 to 30.0 (9.29dB to 14.77dB) RMS Gain Dielectric's GTH Series UHF Slot Antennas provide excellent DTV/NTSC performance. The TFU-GTH is "electrically center fed". This design feature provides superior frequency response across a single or both channels. VSWR is 1.08:1 across one channel or 1.1:1 or less across two adjacent channels. The Dielectric GTH Series Antenna is fully enclosed in a maintenance free, non-pressurized radome impregnated with international orange color. | 9.0 (9.54dB) RMS Gain | |-------------------------| | 16.0 (12.04dB) RMS Gain | | 21.5 (13.32dB) RMS Gain | | 27.0 (14.31dB) RMS Gain | | 30.0 (14.77dB) RMS Gain | | | ^{*}Gains given apply to single channel operation only. For adjacent channel operation contact factory for specifications. Contact factory for options on broader band solutions. ¹Slot covers and deicers optional. #### TFU-10GTH-R 9.0 (9.54dB) RMS Gain #### TFU-18GTH-R 16.0 (12.04dB) RMS Gain #### TFU-24GTH-R 21.5 (13.32dB) RMS Gain #### TFU-30GTH-R 27.0 (14.31dB) RMS Gain Gain figures are for single channel operations. Contact factory for gain figures for dual channel operation. #### TFU-GTH-BB The Broadband Pylon Series antenna is designed as a medium bandwidth alternative to high power multi-channel panel broadcast antenna systems. #### **Key Features** - Broadband - A low windload alternative to large panel antenna systems - Dual 8" input - Input powers up to 240 kW - Elliptically polarized - Top mount or side mount design - Omni-directional #### **Specifications** Polarization: Elliptical • Beam Tilt Standard: 1.5 degrees • Input Size: Dual 8" ■ VSWR: < 1.15:1 Max Input Power: 120 kW per input • RMS Gain: 13 / 11.2 dBd • H₄ (ft) includes lightning arrester: 46.5 • H₂ (ft): 42.5 • D₁ (ft): 20.4 Windload 222-G EPA: 70.5 Ft² • Weight (lbs): 8,440 Azimuth-VPOL Azimuth—HPOL #### TU Broadband (Delta) Series Shown with panel radome (standard) #### Standard Deltawing PANEL SPECIFICATION NOTE: Due to a continuous program of improvement, specifications are subject to change without notice. - Wide impedance bandwidth: 470-860 MHz - Stainless steel elements and panel for maximum reliability and structural stability - Segmented non-pressurized radome for easy on-tower service - Available with full cylindrical radome - Custom azimuth patterns can be designed to meet specific protection/coverage requirements - · Low ice sensitivity - Standard configurations of one to five around - · Custom beam tilt and null fill available - Designed for digital and/or analog service The Dielectric TU Series Panel Antenna consists of an array of panels typically mounted in a four around configuration and supplied with a support structure for tower top mounting. The number of panels per layer and the number of layers are variables used to determine the azimuthal and elevation patterns. The TU Series Panel Antenna has wideband impedance bandwidth and is ideal for multiplexing several UHF channels. Each antenna is fully assembled, and is tested at the factory prior to shipping. Custom designed antennas meeting special requirements such as specific azimuthal pattern, different gains and custom power input requirements are available upon request. Shown with full radome (optional) #### **Single Panel Specifications** | | | Channel | Panel Input
7/8" | Connector Size
1-5/8" | |---------------------|-------------|---------|---------------------|--------------------------| | Frequency Range | 470-860 MHz | 14 | 2.0 kW | 6.5 kW | | VSWR, 470-860 MHz | 1.1:1 Max. | 41 | 1.7 kW | 5.6 kW | | Impedance | 50 ohm | 69 | 1.5 kW | 5.0 kW | | Survival Wind Speed | 185 mi/h | | | | | Panel Weight | 40 lb | | | | | Polarization | Horizontal | | | | **Average Power Rating** ## TU Series - Deltawing Directivity=1.4 **C1** Directivity=6.0 #### **Electrical Specifications** | No.
of
Layer | RMS
Gain*
s | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | |--------------------|-------------------|---------------|--------------------------|--------------------------------| | 2 | 4.8 | 6.7 | 40 | 6-1/8 | | 4 | 9.4 | 13.2 | 60 | 6-1/8 | | 6 | 14.0 | 19.6 | 110 | 8-3/16 EHT | | 8 | 17.1 | 23.9 | 110 | 8-3/16 EHT | | 10 | 21.6 | 30.2 | 110 | 8-3/16 EHT | | 12 | 24.2 | 33.9 | 110 | 8-3/16 EHT | | 14 | 28.6 | 40.0 | 110 | 8-3/16 EHT | | 16 | 32.5 | 45.5 | 110 | 8-3/16 EHT | ^{*} at channel 41 #### **Mechanical Specifications** | _ | | | | | | |---|----------------------------------|---------------------------------|----------------------------|----------------|--| | | Height
H ₂
(ft) | Moment
Arm
D ₁ | CfAc
(ft ²) | Weight
(lb) | | | | | | | | | | | 8.9 | 4.5 | 46 | 1400 | | | | 16.5 | 8.3 | 83 | 2700 | | | • | 24.1 | 12.1 | 120 | 4000 | | | • | 31.7 | 15.9 | 164 | 5400 | | | - | 39.3 | 19.7 | 214 | 6800 | | | - | 46.9 | 23.5 | 267 | 8200 | | | | 54.5 | 27.3 | 323 | 10000 | | | - | 62.1 | 31.1 | 384 | 11800 | | | | | | | | | #### **Electrical Specifications** | No.
of
Layers | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | |---------------------|---------------|--------------------------|--------------------------------| | 2 | 28.8 | 10 | 3-1/8 | | 4 | 56.4 | 20 | 4-1/16 | | 6 | 84.0 | 30 | 4-1/16 | | 8 | 102.6 | 40 | 6-1/8 | | 10 | 129.6 | 50 | 6-1/8 | | 12 | 145.2 | 60 | 6-1/8 | | 14 | 171.6 | 60 | 6-1/8 | | 16 | 195.0 | 60 | 6-1/8 | ^{*} at channel 41 #### **Mechanical Specifications** | Height
H ₂
(ft) | Moment
Arm
D ₁ | CfAc
(ft²) | Weight
(lb) | |----------------------------------|---------------------------------|---------------|----------------| | 8.9 | 4.5 | 37 | 1100 | | 16.5 | 8.3 | 66 | 2100 | | 24.1 | 12.1 | 99 | 3100 | | 31.7 | 15.9 | 138 | 4200 | | 39.3 | 19.7 | 180 | 5300 | | 46.9 | 23.5 | 225 | 6400 | | 54.5 | 27.3 | 276 | 7900 | | 62.1 | 31.1 | 331 | 9400 | ### **Electrical Specifications** | No.
of
Layers | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | |---------------------|---------------|--------------------------|--------------------------------| | 2 | 14.4 | 20 | 4-1/16 | | 4 | 28.2 | 40 | 6-1/8 | | 6 | 42.0 | 60 | 6-1/8 | | 8 | 51.3 | 80 | 7-3/16 EHT | | 10 | 64.8 | 100 | 8-3/16 EHT | | 12 | 72.6 | 110 | 8-3/16 EHT | | 14 | 85.8 | 110 | 8-3/16 EHT | | 16 | 97.5 | 110 | 8-3/16 EHT | ^{*} at channel 41 #### **Mechanical Specifications** | Height
H ₂
(ft) | Moment
Arm
D ₁ | CfAc
(ft²) | Weight
(lb) | | |----------------------------------|---------------------------------|---------------|----------------|--| | | | | | | | 8.9 | 4.5 | 42 | 1200 | | | 16.5 | 8.3 | 76 | 2300 | | | 24.1 | 12.1 | 111 | 3400 | | | 31.7 | 15.9 | 152 | 4600 | | | 39.3 | 19.7 | 201 | 5800 | | | 46.9 | 23.5 | 246 | 7000 | | | 54.5 | 27.3 | 303 | 8600 | | | 62.1 | 31.1 | 359 | 10200 | | ^{**} Enhanced Heat Transfer (EHT) ## TU Series - Deltawing Directivity=2.0 C4 Directivity=1.7 #### **Electrical Specifications** | No.
of
Layers | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | |---------------------|---------------|--------------------------|--------------------------------| | 2 | 9.6 | 30 | 4-1/16 | | 2 | | 30 | 4-1710 | | 4 | 18.8 | 60 | 6-1/8 | | 6 | 28.0 | 90 |
8-3/16 | | 8 | 34.2 | 110 | 8-3/16 EHT | | 10 | 43.2 | 110 | 8-3/16 EHT | | 12 | 48.4 | 110 | 8-3/16 EHT | | 14 | 57.2 | 110 | 8-3/16 EHT | | 16 | 65.0 | 110 | 8-3/16 EHT | ^{*} at channel 41 #### **Mechanical Specifications** | Height H ₂ (ft) | Moment
Arm
D ₁ | CfAc
(ft ²) | Weight
(lb) | |----------------------------|---------------------------------|----------------------------|----------------| | 8.9 | 4.5 | 46 | 1300 | | 16.5 | 8.3 | 83 | 2500 | | 24.1 | 12.1 | 120 | 3700 | | 31.7 | 15.9 | 164 | 5000 | | 39.3 | 19.7 | 214 | 6300 | | 46.9 | 23.5 | 267 | 7600 | | 54.5 | 27.3 | 323 | 9300 | | 62.1 | 31.1 | 384 | 11000 | ### **Electrical Specifications** | 60 | No.
of
Layers | Pe
Ga | |----------|---------------------|----------| | \ | 2 | 8 | | 90 | 4 | 16 | | 7 | 6 | 2 | | 1 | 8 | 2 | | /
120 | 10 | 3 | | | 12 | 4 | | | 14 | 4 | | | 16 | 5 | | | | | | * | at | cha | anr | nel | 4 | |---|----|-----|-----|-----|---| #### **Mechanical Specifications** | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | Height
H ₂
(ft) | Moment
Arm
D ₁ | CfAc
(ft²) | Weight
(lb) | |---------------|--------------------------|--------------------------------|----------------------------------|---------------------------------|---------------|----------------| | 8.2 | 35 | 6-1/8 | 8.9 | 4.5 | 46 | 1400 | | 16.0 | 60 | 6-1/8 | 16.5 | 8.3 | 83 | 2700 | | 23.8 | 105 | 8-3/16 EHT | 24.1 | 12.1 | 120 | 4000 | | 29.1 | 110 | 8-3/16 EHT | 31.7 | 15.9 | 164 | 5400 | | 36.7 | 110 | 8-3/16 EHT | 39.3 | 19.7 | 214 | 6800 | | 41.1 | 110 | 8-3/16 EHT | 46.9 | 23.5 | 267 | 8200 | | 48.6 | 110 | 8-3/16 EHT | 54.5 | 27.3 | 323 | 10000 | | 55.3 | 110 | 8-3/16 EHT | 62.1 | 31.1 | 384 | 11800 | at onamior in #### Directivity=2.0 #### **Electrical Specifications** | No.
of
Layers | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | |---------------------|---------------|--------------------------|--------------------------------| | 2 | 9.6 | 30 | 4-1/16 | | 4 | 18.8 | 60 | 6-1/8 | | 6 | 28.0 | 90 | 8-3/16 | | 8 | 34.2 | 110 | 8-3/16 EHT | | 10 | 43.4 | 110 | 8-3/16 EHT | | 12 | 48.4 | 110 | 8-3/16 EHT | | 14 | 57.2 | 110 | 8-3/16 EHT | | 16 | 65.0 | 110 | 8-3/16 EHT | ^{*} at channel 41 #### **Mechanical Specifications** | Heigh
H ₂
(ft) | t Moment
Arm
D ₁ | CfAc
(ft ²) | Weight
(lb) | |---------------------------------|-----------------------------------|----------------------------|----------------| | | | | | | 8.9 | 4.5 | 46 | 1400 | | 16.5 | 8.3 | 83 | 2700 | | 24.1 | 12.1 | 120 | 4000 | | 31.7 | 15.9 | 164 | 5400 | | 39.3 | 19.7 | 214 | 6800 | | 46.9 | 23.5 | 267 | 8200 | | 54.5 | 27.3 | 323 | 10000 | | 62.1 | 31.1 | 384 | 11800 | ^{**} Enhanced Heat Transfer (EHT) 11800 384 **Mechanical Specifications** 31.1 TU Series - Deltawing **Electrical Specifications** | No.
of
Layers | Peak
Gain* | Max Avg
Power
(kW) | EIA Input
Connector
(in) | Height
H ₂
(ft) | Moment
Arm
D ₁ | CfAc
(ft²) | Weight
(lb) | |---------------------|---------------|--------------------------|--------------------------------|----------------------------------|---------------------------------|---------------|----------------| | 2 | 14.9 | 20 | 4-1/16 | 8,9 | 4.5 | 46 | 1400 | | 4 | 29.1 | 40 | 6-1/8 | 16.5 | 8.3 | 83 | 2700 | | 6 | 43.4 | 60 | 6-1/8 | 24.1 | 12.1 | 120 | 4000 | | 8 | 53.0 | 80 | 7-3/16 EHT | 31.7 | 15.9 | 164 | 5400 | | 10 | 67.0 | 100 | 8-3/16 EHT | 39.3 | 19.7 | 214 | 6800 | | 12 | 75.0 | 110 | 8-3/16 EHT | 46.9 | 23.5 | 267 | 8200 | | 14 | 88.7 | 110 | 8-3/16 EHT | 54.5 | 27.3 | 323 | 10000 | 8-3/16 EHT 62.1 100.8 110 16 #### **TU Series Notes** The data shown is for top mounted antennas with standard panel placement. Custom designs are available on request. Indicated power ratings are for standard TU arrays configured for maximum power rating with 1-5/8" EIA panel inputs and the listed array input connections. Ratings are based upon combining two channels into the antennas; contact the factory to verify ratings with more than two channels combined. TU designs with lower power ratings are available. Custom array designs with higher power ratings are also possible. Mechanical data shown is for top mounted antennas including tower section, lighting protector, beacon (optional), panels, power dividers, and feedlines. Top mounted antenna is supplied with adapter section and flange mount for bolting to tower top plate. Wind areas are based on TIA/EIA-222-F specification and include force coefficient. Height with lightning protector, $H_4=H_2+4$ ft. Side mount antennas do not include lightning protector. Weight for side mount antennas are reduced also; contact the factory for details. ^{*} at channel 41 ## TU Series - Deltawing, Deltastar and Deltalite™ 14 Layer 16 Layer #### TU Series - Deltalite™ Deltalite™ - Horizontal polarization - Wide impedance bandwidth: 470-860 MHz - Stainless steel elements and panel for top reliability - Excellent omni azimuth pattern circularity - Designed for combined digital and analog signals - High power handling, up to 100 kW average - Custom beam tilt and null filling available - Full cylindrical radome for minimum windloading The TU Series Deltalite panel antenna combines the broadband characteristics of a panel antenna with the low windload characteristics of a pylon antenna. TU Series antennas feature sectionalized non-pressurized Fiberglass radomes for easy on tower service. The 30.5" O.D. fully cylindrical radome allows for reduced windload over standard panel antenna arrays. The full radome also reduces ice sensitivity over that of conventional panel style antennas. Permanent, external, steel pole steps accommodate beacon light servicing. #### **Measured Antenna Input VSWR** #### **Electrical Specifications** | Model | Bays RMS Gain Input Max. Avg. Ratio (dB) (in) Power (kW) | Rad. Center Above
Antenna Base | |-------------------|--|-----------------|-----------------|-----------------|-------|-------|-------|-------|------|----|--|--|--|--|--|--|--|--|--|--|--|--|-----------------------------------| | | | Ch 14 | Ch 40 | Ch 69 | | Ch 14 | Ch 40 | Ch 69 | kW | ft | | | | | | | | | | | | | | | TUF-04-4/16H-1-T | 4 | 6.7
(8.26) | 8.6
(9.34) | 10.0
(10.00) | 6-1/8 | 30 | 27 | 24 | 1000 | 9 | | | | | | | | | | | | | | | TUF-04-6/24H-1-T | 6 | 9.8
(9.91) | 12.5
(10.97) | 14.6
(11.64) | 6-1/8 | 45 | 41 | 36 | 1500 | 12 | | | | | | | | | | | | | | | TUF-04-8/32H-1-T | 8 | 13.2
(11.21) | 16.9
(12.28) | 19.7
(12.94) | 6-1/8 | 60 | 54 | 48 | 2000 | 16 | | | | | | | | | | | | | | | TUF-04-10/40H-1-T | 10 | 17.9
(12.53) | 21.2
(13.26) | 24.8
(13.94) | 6-1/8 | 60 | 54 | 48 | 2000 | 20 | | | | | | | | | | | | | | | TUF-04-12/48H-1-T | 12 | 22.6
(13.54) | 25.6
(14.08) | 29.9
(14.76) | 6-1/8 | 71 | 62 | 61 | 3000 | 24 | | | | | | | | | | | | | | | TUF-04-14/56H-1-T | 14 | 24.8
(13.94) | 30.0
(14.77) | 35.0
(15.44) | 6-1/8 | 71 | 62 | 61 | 3000 | 28 | | | | | | | | | | | | | | | TUF-04-16/64H-1-T | 16 | 26.9
(14.30) | 34.3
(15.35) | 40.1
(16.03) | 6-1/8 | 71 | 62 | 54 | 4000 | 31 | | | | | | | | | | | | | | - 1 RMS gain data is relative to a half-wave dipole. Values given are nominal and assume standard harness configurations. - Gain will vary depending on specific feed system, null fill and beam tilt. Interpolate to estimate gain for other channels. First null fill of 20% is standard. Beam tilt .75 degrees is assumed. Other values of tilt and fill are available upon request. - 3 Power ratings are nominal @ 40°C and assume pressurization with dry air or nitrogen to 5 psi minimum. Power ratings may vary depending on specific feed system design and local conditions. 4 Antenna components and feed harnesses are optimized for channels of interest. #### **Mechanical Specifications** | Model | Length with 4 ft. | Loads @ EIA-222-C | 50/33.3 PSF | Loads @ 1 | Weight | | |-----------------|---------------------|-------------------|-------------|-----------|---------------------|-------| | | Lightning Rods | Shear | Moment | Area CfAc | Moment Arm | (lbs) | | | H ₄ (ft) | (lbs) | (lb-ft) | (ft²) | D ₁ (ft) | | | TUF-04-4/16H-1 | 20.5 | 1600 | 14000 | 34 | 8.9 | 2500 | | TUF-04-6/24H-1 | 28.1 | 2300 | 28000 | 46 | 12.6 | 4000 | | TUF-04-8/32H-1 | 35.7 | 3000 | 48000 | 58 | 16.4 | 5100 | | TUF-04-10/40H-1 | 43.3 | 3600 | 72000 | 70 | 20.2 | 6500 | | TUF-04-12/48H-1 | 50.9 | 4300 | 102000 | 82 | 24.0 | 8000 | | TUF-04-14/56H-1 | 58.5 | 5000 | 132000 | 94 | 27.8 | 9200 | | TUF-04-16/64H-1 | 66.1 | 5700 | 162000 | 106 | 31.6 | 10500 | - TUF antennas must be pressurized with dry air or nitrogen. Loads provided assume TIA/EIA-222-F with no ice and no strakes. Design conditions: 80 mi/h basic wind speed, 1200 ft. tower height, 42.6 psf. CfAc is calculated using Cf=.59 from TIA/EIA-222-F, Table 1. Contact a qualified structural consultant to determine if this is applicable for your installation. - 5 Windloads will vary depending on conditions at installation location. - 6 Sidemount loads exclude mounting brackets. ## Top Mounted Antenna Systems—UHF #### TU Series - Deltastar - Horizontal polarization - Five around configuration for excellent omnidirectional pattern characteristics - Very high input power ratings, up to 180 kW average - Full cylindrical radome for minimal windloading - Stainless steel elements and panel for maximum reliability - Ideal master antenna for combined analog and digital signals - Typical VSWR under 1.05:1 per channel and under 1.1:1 across 20 channel bandwidth - Ideal for stacked configurations - Custom beam tilt and null fill available The TU Series Deltastar antenna from Dielectric is a versatile and reliable antenna solution allowing for broadcast of multiple stations from one antenna. The TU Series antennas
are ideal for community master antenna facilities. Deltastar antennas provide broadband impedance characteristics ideal for digital broadcast formats, but are also an excellent choice for analog formats. UHF Deltastar antennas feature a rugged, field proven design for a worry-free long life. Capable of supporting antennas above, Dielectric Deltastar antennas are available in stackable configurations. The Deltastar antenna is constructed to operate in various environments subject to high winds and ice loading. Refer to page 10 for elevation patterns. Contact factory for electrical and mechanical specifications. ## TU Series - Deltastar Directivity=3.0 Directivity=2.1 #### **VHF** Suited for those stations allocated VHF DTV Channels, Dielectric's product line includes a wide array of VHF antenna products. Dielectric has a wide variety of top mounted and side mounted antenna models to choose from in both horizontal and circular polarization. The TW and THV Series pylon antennas, TUV Series dualband arrays, TH Series panel arrays, TF Series superturnstile arrays and the new TLS-V low power VHF arrays are discussed in more detail throughout this catalog. For circularly polarized applications contact factory. #### TW Series - Excellent circularity - Proven pylon design with low windload - Can be structurally designed for stacking - Full polycarbonate radome standard* - High power handling - Ideal for NTSC or DTV transmission - Elevation gains from 7 (8.45dB) to 15 (11.76dB) This horizontally polarized traveling wave antenna for Channels 7 to 13 uses the reliable technology Dielectric is known for in a very aperture efficient, low windload design. The TW antenna is designed for omnidirectional applications. This antenna comes with a full radome. The strong polycarbonate radome is impregnated with international orange or white and does not require any painting during its lifetime. Non-radomed versions are available upon request. Both radomed or non-radomed versions can be ordered with pressurized pole. Since only the pole is pressurized and not the radome, the antenna is easily accessible for inspection. Pole pressurization is not required for normal operation of the antenna. Other available options are bury mount and side mounting on a tower. ^{*}Slot covers and deicers optional. #### **TW Series** #### **TW-7B** 7.0 (8.45dB) RMS Gain #### **TW-12B** 12.0 (10.79dB) RMS Gain #### **TW-9B** 9.0 (9.54dB) RMS Gain #### **TW-15B** 15.0 (11.76dB) RMS Gain #### **Electrical Specifications** Polarization: Horizontal Beam Tilt: .5° to 1.0° typical Azimuth Pattern Circularity: +/- 0.8dB Azimuth Pattern Circularity: +/- 0.8dB Max TV Peak Power: 80kW Vertical Pattern Gains: 7 (8.45dB), 9 (9.54dB), 12 (10.79dB), 15 (11.76dB) Inputs Available: 3-1/8 in., 4-1/16 in., 6-1/8 in. 50 ohms or 6-1/8 in. 75 ohms Input VSWR: NTSC 1.05:1 at PIX + .5 MHz, 1.08:1 maximum DTV 1.08:1 Channel **Typical Mechanical Characteristics*** | | Channel | Freq
MHz | H2
ft | H3
ft | D1
ft | R1
lbs | Moment
ft-lbs | CaAc
ft ² | Natural Freq.
Hz | Weight
Ibs | |-------------|---------|-------------|----------|----------|----------|-----------|------------------|-------------------------|---------------------|---------------| | TW-7Bx-R | 7 | 177 | 50.9 | 27.4 | 26.4 | 2890 | 76290 | 52.8 | 1.04 | 8100 | | | 8 | 183 | 49.5 | 26.5 | 25.8 | 2820 | 72680 | 51.5 | 1.11 | 7900 | | | 9 | 189 | 48.1 | 25.7 | 25.2 | 2750 | 69250 | 50.2 | 1.17 | 7700 | | | 10 | 195 | 46.9 | 25.1 | 24.6 | 2680 | 66010 | 49.0 | 1.23 | 7500 | | | 11 | 201 | 45.7 | 24.2 | 24.1 | 2620 | 63170 | 47.9 | 1.29 | 7300 | | | 12 | 207 | 44.6 | 23.5 | 23.6 | 2570 | 60700 | 46.9 | 1.36 | 7200 | | | 13 | 213 | 43.6 | 23.0 | 23.2 | 2510 | 58120 | 45.9 | 1.42 | 7000 | | TW-7Bx | 7 | 177 | 50.9 | 27.4 | 27.4 | 2070 | 56770 | 37.7 | 1.04 | 8000 | | slot covers | 8 | 183 | 49.5 | 26.5 | 26.7 | 2020 | 53980 | 36.8 | 1.11 | 7800 | | | 9 | 189 | 48.1 | 25.7 | 26.1 | 1970 | 51340 | 36.0 | 1.17 | 7600 | | | 10 | 195 | 46.9 | 25.1 | 25.4 | 1930 | 49110 | 35.2 | 1.23 | 7500 | | | 11 | 201 | 45.7 | 24.2 | 24.9 | 1890 | 47000 | 34.4 | 1.29 | 7300 | | | 12 | 207 | 44.6 | 23.5 | 24.3 | 1850 | 44990 | 33.7 | 1.36 | 7200 | | | 13 | 213 | 43.6 | 23.0 | 23.8 | 1810 | 43080 | 33.1 | 1.42 | 7000 | | TW-9Bx-R | 7 | 177 | 59.2 | 31.5 | 30.8 | 3760 | 115630 | 68.6 | 1.02 | 12600 | | | 8 | 183 | 57.5 | 30.5 | 30.0 | 3650 | 109480 | 66.7 | 1.08 | 12200 | | | 9 | 189 | 55.9 | 29.6 | 29.3 | 3560 | 104250 | 65.0 | 1.14 | 11900 | | | 10 | 195 | 54.5 | 28.9 | 28.6 | 3470 | 99300 | 63.3 | 1.20 | 11600 | | | 11 | 201 | 53.1 | 27.9 | 28.0 | 3380 | 94600 | 61.8 | 1.27 | 11300 | | | 12 | 207 | 51.8 | 27.1 | 27.4 | 3300 | 90410 | 60.3 | 1.33 | 11000 | | | 13 | 213 | 50.5 | 26.4 | 26.8 | 3230 | 86690 | 58.9 | 1.40 | 10800 | | TW-9Bx | 7 | 177 | 59.2 | 31.5 | 32.2 | 2790 | 89940 | 50.9 | 1.02 | 12500 | | slot covers | 8 | 183 | 57.5 | 30.5 | 31.4 | 2710 | 85080 | 49.6 | 1.08 | 12200 | | | 9 | 189 | 55.9 | 29.6 | 30.6 | 2650 | 81110 | 48.3 | 1.14 | 11800 | | | 10 | 195 | 54.5 | 28.9 | 29.9 | 2580 | 77060 | 47.1 | 1.20 | 11500 | | | 11 | 201 | 53.1 | 27.9 | 29.2 | 2520 | 73510 | 46.0 | 1.27 | 11300 | | | 12 | 207 | 51.8 | 27.1 | 28.5 | 2460 | 70150 | 45.0 | 1.33 | 11000 | | | 13 | 213 | 50.5 | 26.4 | 27.9 | 2410 | 67240 | 44.0 | 1.40 | 10700 | | TW-12Bx-R | 7 | 177 | 75.9 | 39.9 | 38.2 | 3310 | 126550 | 87.1 | 0.62 | 16000 | | | 8 | 183 | 73.6 | 38.6 | 37.2 | 3220 | 119890 | 84.6 | 0.66 | 15600 | | | 9 | 189 | 71.5 | 37.4 | 36.3 | 3130 | 113610 | 82.3 | 0.70 | 15100 | | | 10 | 195 | 69.6 | 36.5 | 35.4 | 3470 | 122900 | 80.1 | 0.74 | 14700 | | | 11 | 201 | 67.7 | 35.2 | 34.6 | 3380 | 116910 | 78.1 | 0.78 | 14300 | | | 12 | 207 | 66.0 | 34.2 | 33.8 | 3290 | 111240 | 76.1 | 0.82 | 14000 | | | 13 | 213 | 64.4 | 33.4 | 33.1 | 3220 | 106500 | 74.3 | 0.86 | 13600 | | TW-12Bx | 7 | 177 | 75.9 | 39.9 | 40.6 | 2780 | 112760 | 64.3 | 0.62 | 15900 | | slot covers | 8 | 183 | 73.6 | 38.6 | 39.4 | 2710 | 106900 | 62.5 | 0.66 | 15500 | | SIST SOVERS | 9 | 189 | 71.5 | 37.4 | 38.4 | 2630 | 101000 | 60.9 | 0.70 | 15100 | | | 10 | 195 | 69.6 | 36.5 | 37.4 | 2560 | 95800 | 59.3 | 0.74 | 14700 | | | 11 | 201 | 67.7 | 35.2 | 36.5 | 2500 | 91250 | 57.8 | 0.78 | 14300 | | | 12 | 207 | 66.0 | 34.2 | 35.6 | 2440 | 86950 | 56.4 | 0.82 | 13900 | | | 13 | 213 | 64.4 | 33.4 | 34.8 | 2380 | 82860 | 55.1 | 0.86 | 13600 | Channel number R = Radomed H2 = Antenna height without lightning protector H4 = Height with lightning protector (H4=H2+4 feet) H3 = Center of radiation CaAc = Force Coefficient Projected Area (4 foot lightning protector and beacon included) D1 = Moment Arm Formula for Projected Area according to EIA-222C: A = 1.11 x (CaAc-1) Antenna designed in accordance with AISC specifications for design of structural steel for building as prescribed by TIA/EIA-222-F. TW7 and TW9 based on 90 mi/h basic wind speed TW12 based on 80 mi/h windspeed TW-12Bx-R Ch 7, 8, 9 based on 75 mi/h basic wind speed *Contact factory for application specific mechanical details. #### **THV Series** - Highband VHF directional antenna - Top or side mounting options - Low windload/economical design - Available with custom azimuth patterns - Elevation gains from 6.0 (7.78dB) to 12.0 (10.79dB) typical - Peak gains to 22.8 (13.58dB) - Full polycarbonate radome standard - High input power handling - Ideal for NTSC and DTV applications - Available with CPOL or EPOL The THV antenna is designed for directional VHF applications (Channels 7-13) in both top and side-mounted configurations. The THV utilizes the simplicity and reliability of pylon technology. This antenna combines high power handling, pattern diversity (elevation and azimuth), and Dielectric's conservative design approach to produce a superior product for single frequency high band operations. The THV azimuth pattern can be custom designed to fit a variety of applications, catering to facilities proposing maximization for DTV, those with protection requirements or those wishing to focus the energy towards the market of interest. Directivity=1.4 Directivity=1.7 S190 Directivity=1.9 Contact factory for omni directional options. #### **THV Series** 6.0 (7.78dB) RMS Gain 10.0 (10.00dB) RMS Gain 12.0 (10.79dB) RMS Gain ### THV Series - Mechanical Specifications - Typical Cardioid Pattern **Top Mount** NOTE: Typical loads for Cardioid Pattern \mathbf{x} = Channel number **R** = Radomed **H2** - Overall height without lightning protection H3 - Centerline of radiation H4 - Overall height with lightning protection | | Channel | H4 (ft) | H2 (ft) | H3 (ft) | W(lbs) | RS-2
A (ft²) | 222-C
D1 (ft) | TIA/EIA-
CaAc(ft²) | | Limits | |------------|-------------------------------------|--|--|--|---|--|--|---|--|----------------------------------| | THV-6Ax-R | 7
8
9
10
11
12
13 | 48.0
46.6
45.3
44.1
42.9
41.9
40.8 | 44.0
42.6
41.3
40.1
38.9
37.9
36.8 | 24.2
23.4
22.6
21.9
21.3
20.7
20.1 | 7900
7660
7440
7230
7030
6850
6670 | 58
57
55
53
52
51
49 | 23.9
23.2
22.5
21.8
21.2
20.7
20.1 | 55
54
52
51
49
48
47 | 24.3
23.6
22.9
22.3
21.7
21.1
20.5 | 120 psf
or
135 mi/h
bws | | THV-10Ax-R | 7
8
9
10
11
12
13 | 65.7
63.8
62.0
60.3
58.7
57.2
55.8 | 61.7
59.8
58.0
56.3
54.7
53.2
51.8 | 30.8
29.9
29.0
28.1
27.4
26.6
25.9 | 10870
10550
10240
9960
9690
9430
9190 |
87
84
81
79
77
75
73 | 31.8
30.9
30.0
29.1
28.3
27.6
26.9 | 82
79
77
75
73
71
69 | 32.0
31.1
30.2
29.3
28.5
27.8
27.1 | 50 psf
or
90 mi/h
bws | | THV-12Ax-R | 7
8
9
10
11
12
13 | 76.8
74.5
72.4
70.4
68.5
66.7
65.1 | 72.8
70.5
68.4
66.4
64.5
62.7
61.1 | 36.4
35.3
34.2
33.2
32.3
31.4
30.5 | 15400
14930
14490
14080
13690
13330
12280 | 116
112
109
105
103
100
97 | 37.3
36.1
35.0
34.0
33.1
32.2
31.4 | 108
105
102
99
96
93
91 | 37.4
36.3
35.2
34.2
33.3
32.4
31.6 | 50 psf
or
90 mi/h
bws | Contact factory for application specific mechanical details. # TF-DC Series Dual Channel Superturnstile - Dual channel NTSC/DTV, DTV/DTV or NTSC/NTSC operation - Top mount circularity - Common aperture for multiple signals - Proven superturnstile design Dielectric's proven TF Series VHF Superturnstile antenna solves the problem for dual channel VHF assignments. Both the NTSC and the DTV channel can be combined into a single top mounted antenna. High levels of isolation between the inputs are provided by a hybrid combiner/splitter and dual feedline system as shown below. Models with 2 to 12 bays are available depending upon ERP requirements. Consult the factory for details on your specific application. #### **Mechanical Specifications - Typical** | | | Ch. 2-3 | Ch. 4-6 | Ch. 7-13 | |------------------------------------|-------------------------|---------|---------|----------| | Height with Lightning Protector | H ₄ (ft) | 105.0 | 86.8 | 41.3 | | Height less Lightning Protector | H ₂ (ft) | 101.0 | 82.8 | 37.3 | | Height of Center of Radiation | H ₃ (ft) | 51.5 | 42.0 | 19.3 | | Aerodynamic Area (Above tower top) | CaAc (ft ²) | 207 | 147 | 64 | | Moment Arm (Above tower top) | D ₁ (ft) | 45.0 | 37.3 | 18.4 | | Aerodynamic Area (Below tower top) | CaAc (ft ²) | 29 | 22 | 10 | | Moment Arm (Below tower top) | D ₃ (ft) | 10.3 | 8.1 | 5.3 | | Bury Length | D ₂ (ft) | 20.0 | 16.4 | 10.0 | | Weight | W (ton) | 11.0 | 7.6 | 1.8 | | Deicer Power (NTSC) | 230/460 V (3 d |) 18kW | 12kW | 4.8kW | Note: Structural design to TIA/EIA-222-F code with 80 mi/h basic wind speed. Contact factory for application specific mechanical details. Contact factory for broader band solutions. ### TUV Series - Dualband™ TUV-H #### **VSWR** **NTSC** | Pix + .5 MHz | 1.05:1 | |--------------|--------| | Color | 1.08:1 | | Aural | 1.10:1 | | Channel | 1.10:1 | | DTV | 1.08:1 | ## TUV-H Mechanical Specifications Contact factory. #### The Award Winning TUV-H Refer to TFU-GTH for UHF elevation patterns (pg. 4) Azimuth patterns vary significantly based on your custom requirements. - Combines both VHF and UHF signals into common antenna - TUV-H for highband VHF channels 7-13 - Omni-directional or directional UHF patterns available - Similar windload/weight to current top mounted VHF antenna - Full ERP for both VHF and UHF service - Proven pylon design - Ideal for NTSC/DTV, DTV/DTV, or NTSC/NTSC transmissions The award winning Dualband Series antenna features the latest in state of the art design allowing for the transmission of highband VHF and UHF signals from a common aperture. This antenna is ideal for the highband VHF broadcaster who has been allocated a UHF DTV channel yet has no additional tower capacity. This antenna will also allow the broadcaster to revert to VHF DTV service in the future with no antenna modifications. ## Typical Electrical Specifications | | RMS Gain Main Lobe | Power Rating | ERP | |-----|--------------------|--------------|---------| | N13 | 10.0 (10.0 dB) | 50 kW | 316 kW | | D39 | 20.0 (13.01 dB) | 60 kW | 1000 kW | Note: Other patterns available Pattern performance not independent of channel #### TUV Series - Dualband™ TUV-M and TUV-L #### VSWR (for H, M & L) **NTSC** | Pix + .5 MHz | 1.05:1 | |--------------|--------| | Color | 1.08:1 | | Aural | 1.10:1 | | Channel | 1.10:1 | | DTV | 1.08:1 | - Combines both VHF and UHF signals into common antenna - TUV-M for midband VHF (ch. 4-6) - TUV-L for lowband VHF (ch. 2-3) - Omni-directional or directional UHF patterns available - Similar windload/weight to current top mounted VHF antenna - Full ERP for both VHF and UHF service - Ideal for NTSC/DTV, DTV/DTV, or NTSC/NTSC transmissions The Dualband™ Series antenna features the latest in state of the art design allowing for the transmission of lowband VHF (Channels 2 & 3) or midband (Channels 4-6) and UHF signals from a common aperture. The TUV-L and TUV-M antennas are compliments to the award winning¹TUV-H antenna introduced in 2001. The TUV-L and TUV-M antennas are ideal for the lowband and midband VHF broadcaster who has been allocated a UHF DTV channel yet has no additional tower capacity. The Dualband[™] antenna can be used in conjunction with Dielectric's Shared Line Tees and EHT[™] transmission line. Through the use of this combination of products, not only can you minimize the loading at the tower top, but also eliminate the need for a second transmission line run. This antenna will also allow the broadcaster to revert to VHF DTV service in the future with no antenna modifications. Typical Electrical Specifications | | RMS Gain Main Lobe | Power Rating | ERP | |-----|--------------------|--------------|---------| | N3 | 4.0 (6.02dB) | 30 kW | 100 kW | | N6 | 6.0 (7.78dB) | 30 kW | 100 kW | | D39 | 20.0 (13.01 dB) | 60 kW | 1000 kW | Note: Other patterns available Pattern performance not independent of channel ¹TV Technology's Star 2001 and Digital Television's Pick of the Show 2001. #### Broadband Stacked Arrays - Combine multiple signals into common stacked arrays - Top mount performance for both NTSC and DTV services - Excellent amplitude and phase response for DTV - Superior circularity - High power handling and bandwidth capacity Dielectric is a leader in stacked antenna technology with over 100 stacked arrays on the air today. Dielectric's stacked antennas are unique in that they are a true cantilevered system providing top mounted performance characteristics for both DTV and NTSC services. Top mounted antennas are the only solution for truly omnidirectional DTV performance. The stacked systems shown can be used on new towers or within existing apertures (with no or limited tower modifications). All stacked systems are custom designs tailored to individual station specifications. Stacked broadband arrays allow for maximum aperture efficiency by combining multiple services into a common aperture. Stacked arrays have been designed to accommodate up to eight full power television broadcasts from a common array. #### **UHF/UHF Stacked Arrays** - DTV gain up to 28.0 (14.47dB) typical - NTSC gain up to 30.0 (14.47dB) typical - True linear stack for optimum performance - Maximizes DTV "line of sight" Dielectric is a leader in stacked antenna technology with over 100 stacked arrays on the air today. Dielectric's stacked antennas are unique in that they are a true cantilevered system providing top mounted performance characteristics for both DTV and NTSC services. Top mounted antennas are the only solution for truly omnidirectional DTV performance. The stacked systems shown can be used on new towers or within existing apertures (with no or limited tower modifications). All stacked systems are custom designs tailored to individual station specifications. Stacked broadband arrays allow for maximum aperture efficiency by combining multiple services into a common aperture. Stacked arrays have been designed to accommodate up to eight full power television broadcasts from a common array. ## UHF/VHF (Low-Mid Band) Stacked Arrays - Direct mechanical replacement for existing TF-6 - Lower windload than existing TF-6 - True linear stack design optimizing circularity for both services #### **Electrical Specifications** | Ch. 2-3 Design | NT | SC | | | | DTV | | | | |--|-----|-----|-------|-------|-------|-------|-------|-------|-------| | Channels | 2 | 3 | 14-16 | 17-23 | 24-28 | 29-35 | 36-40 | 41-49 | 50-69 | | RMS Gain
(Power ratio) ¹ | 2.9 | 3.1 | 17.5 | 19.0 | 21.5 | 23.0 | 25.0 | 27.0 | 27.0 | | Power Rating (kW) ² | 50 | 50 | 72 | 68 | 67 | 65 | 63 | 60 | 46 | | Ch 4-6 Design | NT | 'SC | | | | DTV | | | | | Ch. 4-6 Design | | NTSC | | | | | DTV | | | | |--|-----|------|-----|-------|-------|-------|-------|-------|-------|-------| | Channels | 4 | 5 | 6 | 14-18 | 19-27 | 28-36 | 37-45 | 46-55 | 56-64 | 65-69 | | RMS Gain
(Power ratio) ¹ | 2.9 | 3.1 | 3.3 | 14.5 | 16.0 | 17.5 | 19.0 | 21.5 | 23.0 | 25.0 | | Power Rating (kW) ² | 50 | 50 | 50 | 72 | 67 | 65 | 61 | 59 | 47 | 46 | ¹ DTV-UHF gains are maximum available. ² Note: NTSC power ratings are based on peak visual power + 20% aural; DTV power ratings are based on average power. | | NTSC | DTV | |--------------|------------|-----------| | Polarization | Horizontal | Horizonta | | Circularity | ± 2dB | ± 1dB | | Input Size | 3-1/8" | 6-1/8" | ## UHF/VHF (High Band) Stacked Arrays - Direct mechanical replacement for existing TW-15A - Arrays can be on top or bottom of stack depending on future DTV channel preference. - True linear stack design optimizing circularity for both services #### **Electrical Specifications** | Ch. 7 Design | NTSC | DTV | | | | | | |-------------------------------------|------|-------|-------|-------|-------|-------|--| | Channels | 7 | 14-16 | 17-23 | 24-28 | 29-35 | 47-69 | | | RMS Gain (Power ratio) ¹ | 9.0 | 21.5 | 23.0 | 25.0 | 27.0 | 30.0 | | | Power Rating (kW) ² | 60 | 71 | 68 | 67 | 61 | 48 | | | DTV | | | | | | |---------|-------|-----------|----------------|--|--| | 27-33 3 | 34-40 | 41-48 | 49-69 | | | | 21.5 | 23.0 | 25.0 | 27.0 | | | | 65 | 63 | 61 | 48 | | | | | 21.5 | 21.5 23.0 | 2110 2010 2010 | | | ¹ DTV-UHF gains are
maximum available. NTSC gain is 9.0 for channel 7-13 designs. For VHF channels between 7 & 13, DTV gain for a given channel may be approximated by interpolation. Note: NTSC power ratings are based on peak visual power + 20% aural; DTV power ratings are based on average power. | | NISC | DIV | |--------------|------------|------------| | Polarization | Horizontal | Horizontal | | Circularity | ± 0.8dB | ± 1.5dB | | Input Size | 4-1/16" | 6-1/8" | | | | | # UHF/VHF-CP (Low-Mid Band) Stacked Arrays - DTV option for existing Ch. 2-6 installations - NTSC upgrade to circular polarization - True linear stack design optimizing circularity for both services #### **Electrical Specifications** | | NTSC | | | | DTV | | | | |---|--------|-------|--------------------|-------|----------|---------|------------|--------| | Channels | 2-6 | 14-16 | 17-23 | 24-28 | 29-35 | 36-40 | 41-49 | 50-69 | | RMS Gain ¹ | 2.2 | 17.5 | 19.0 | 21.5 | 23.0 | 25.0 | 27.0 | 27.0 | | Power Rating (kW) ² | 70 | 72 | 68 | 67 | 65 | 63 | 60 | 46 | | ¹ DTV-UHF gains are maximum available. | | | | | NTS | C | | DTV | | ² Note: NTSC power ratings
on peak visual power + 20% | aural; | Polai | Polarization | | Circular | | Horizontal | | | DTV power ratings are based average power. | 1 011 | Circu | Circularity (HPOL) | | ± 1.5dB | | ± 1dB | | | | | | (VPOL) | | ± 2.0 dB | | N/A | | | | | Axial | Ratio | | 3 dB | | N/A | | | | | Input | Input Size | | | 4-1/16" | | 6-1/8" | # UHF/VHF-CP (High Band) Stacked Arrays - DTV option for existing Ch. 7-13 installations - NTSC upgrade to circular polarization - Future reversion to VHF DTV - True linear stack design optimizing circularity for both services #### **Electrical Specifications** | TCL-12A# | | | | NTSC | | | | |--------------------------------|-----|-----|-----|------|-----|-----|-----| | Channels | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | RMS Gain (HPOL) | 4.6 | 4.7 | 4.9 | 5.0 | 5.2 | 5.3 | 5.5 | | Power Rating (kW) ² | 70 | 70 | 70 | 70 | 70 | 70 | 70 | | TFU-##GBH-R | | | | DTV | | | |--------------------------------|-------|-------|-------|-------|-------|-------| | Channels | 14-21 | 22-29 | 30-36 | 37-44 | 45-52 | 53-69 | | RMS Gain ¹ | 17.5 | 19.0 | 21.5 | 23.0 | 25.0 | 27.0 | | Power Rating (kW) ² | 69 | 67 | 65 | 62 | 60 | 48 | ¹ DTV gains are maximum available. Note: NTSC power ratings are based on peak visual power + 20% aural; DTV power ratings are based on average power. | | NTSC | DTV | |--------------|----------|-----------| | Polarization | Circular | Horizonta | | Circularity | ± 1dB | ± 2dB | | Axial Ratio | 2.5dB | N/A | | Input Size | 6-1/8" | 6-1/8" | #### **TFU-DSC Series** - Single or adjacent channel operation available - Center fed for excellent DTV frequency response - Available in 8-36 layer configurations - Low gain variation across channel (s) of operation - Low VSWR < 1.08:1 - High power input - Elliptical and circular polarization options available - · Other patterns and higher power ratings available Dielectric's DTV DSC Series Antennas provide superior side mounted performance. The DCS series array is designed for high power DTV applications at ERP levels up to 1 MW. This antenna exhibits extremely low load characteristics for the high power broadcaster. #### TFU-10DSC-R 9.5 (9.78dB) RMS Gain #### TFU-18DSC-R 15.0 (11.76dB) RMS Gain #### TFU-24DSC-R 19.5 (12.90dB) RMS Gain #### TFU-30DSC-R 25.5 (14.07dB) RMS Gain Gain figures are for single channel operations. Contact factory for gain figures for dual channel operation. #### **TFU-DSB** - Available in single and dual channel configurations - VSWR: <1.10:1.0 across 6 MHz channel - Beam Tilt: 1.0 degree standard, custom available - Input: 3-1/8" EIA for 8 and 16 bay configuration 4-1/16" EIA for 24 bay configuration Dielectric's DSB series antenna is an economical, mid to high power DTV array offering numerous standard elevation and azimuth pattern combinations. #### **Specifications** ## Maximum Input Power Rating DTV (Average) | Antenna | Standard (S) | | | | | | |--|--------------------------|--------------------------|--------------------------|--------------------------|--|--| | | Ch. 14 | Ch. 30 | Ch. 51 | Ch. 69 | | | | TFU-8DSB
TFU-12DSB
TFU-16DSB
TFU-24DSB
TFU-32DSB | 10
12
13.6
16.2 | 10
12
12.3
14.6 | 10
12
11.1
13.2 | 10
12
10.1
12.1 | | | | Antenna | Custom (C) | | | | | |-----------|------------|--------|--------|--------|--| | | Ch. 14 | Ch. 30 | Ch. 51 | Ch. 69 | | | TFU-8DSB | - | - | - | - | | | TFU-12DSB | - | - | - | - | | | TFU-16DSB | 18.8 | 18.8 | 18.8 | 16.7 | | | TFU-24DSB | 21.8 | 21.8 | 21.8 | 19.9 | | | TEU-32DSB | 25 | 25 | 25 | 25 | | **DSB-A** DSB-J, Directivity=2.0 DSB-D, Directivity=2.9 **DSB-E**, Directivity=3.9 DSB-M, Directivity=1.9 TFU-8DSB 8.0 (9.03dB) RMS Gain TFU-12DSB 12.0 (10.79dB) RMS Gain #### TFU-16DSB 16.0 (12.04dB) RMS Gain #### TFU-24DSB 24.0 (13.80dB) RMS Gain #### TFU-32DSB 32.0 (15.05dB) RMS Gain Gain figures are for single channel operations. Contact factory for gain figures for dual channel operation. #### **TFU-WB Series** The TFU-WB Series antenna is designed as a broadband, low-cost, low-windload alternative to UHF panel antennas. #### **Key Features** - Broadband: Channels 14-51 - Economical alternative to panel antennas - Low weight and 75% less windload than panels - Input powers up to 60 kW - Includes standard mounting brackets - Quick delivery - Available in HPOL or EPOL - Designed for side mounting on existing structures - ATSC 3.0 & DVB-T2 ready - 8, 16 and 24 bays - Cardioid azimuth pattern AZ Gain = 1.6 C-160 #### **Specifications** - Polarization: Horizontal or Elliptical - Beam Tilt Standards: - 1 degree for 8 bay - 0.5 degree for 16 and 24 bay - Input Size: 4 1/16" EIA (others available) - Max VSWR (470-698 mHz): < 1.15:1 - Input Power: 20 kW per 8 bay section - Azimuth Gain: 1.6 or 2.3 - Weight: 410 lbs per 8 bay section - Windload: 27.4 Ft² per 8 bay section **AZ Gain = 2.3 S-230** #### **TFU-WB-8** RMS Gain: 8 • Peak Gain: 12.8 / 18.4 #### **TFU-WB-16** RMS Gain: 14.5 • Peak Gain: 23.2 / 33.4 #### TFU-WB-24 RMS Gain: 21.6 • Peak Gain: 34.6 / 49.7 Multi-channel Slot Arrays TFU-TC Series -Three Channel Pylon Antenna - Low weight and windload - Excellent frequency response - Ideal for NTSC/NTSC, NTSC/DTV or DTV/DTV service - Custom patterns available - Proven pylon design - Full non-pressurized polycarbonate radome standard - Custom elevation and azimuth patterns available The TFU-TC (three channel) series antenna is an 18 MHz wide pylon antenna that exhibits all the advantages typically associated with a pylon antenna. The TFU-TC is designed for side mount operation on any two non-adjacent UHF channels within a given 18 MHz bandwidth. This antenna is the ideal solution for the broadcaster with loading restrictions who would like to replace the NTSC antenna, or simply have a standby NTSC antenna in addition to implementing DTV service. #### **Typical Electrical Specifications** RMS Gain 22.0 to 30.0 (13.42 to 14.77dB) Peak Power 85 kW Consult factory for mechanical specifications. Directivity=2.3 Directivity=1.8 T170 Directivity=1.7 #### TU Broadband (Delta) Series Shown with panel radomes (standard) #### Standard Deltawing PANEL SPECIFICATION NOTE: Due to a continuous program of improvement, specifications are subject to change without notice. - Horizontal polarization - Wide impedance bandwidth: 470-860 MHz - Stainless steel elements and panel for maximum reliability and structural stability - Segmented non-pressurized radome for easy on-tower service - · Available with full cylindrical radome - · Wide selection of azimuth patterns - Custom azimuth patterns can be designed to meet specific protection/coverage requirements - Low ice sensitivity - · Standard configurations of one to five around - Custom beam tilt and null fill available - Designed for digital and or analog service The Dielectric TU Series Panel Antenna consists of an array of panels typically mounted in a four around configuration and supplied with a support structure. The number of panels per layer and the number of layers are variables used to determine the azimuthal and elevation patterns. The TU Series Panel Antenna has wideband impedance bandwidth and is ideal for multiplexing several UHF channels. Each antenna is fully assembled, and is tested at the factory prior to shipping. Custom designed antennas meeting special requirements such as specific azimuthal pattern, different gains and custom power input requirements are available upon request. See pages 6-14 for additional information. #### **VHF** Dielectric's product line includes a wide array of VHF antenna products in both top mounted and side mounted versions and both horizontally and circularly polarized. The THV Series pylon, TH Series broadband VHF panel antenna and TLS-V Stripline Series antennas are discussed in more detail below. For information on additional models or specific applications contact factory. #### TH Series - Deltawing Shown with standard feed point radomes - Field-proven design for top reliability - Excellent horizontal pattern control capabilities - High input power capability - Wide impedance bandwidth for multiplex operation - Rugged corrosion-resistant radiator with simple feed - Branch feed—ideal for analog or digital transmission - Available in one to twelve bay arrays - Full slot radome available for high icing environments Dielectric's TH Series Deltawing VHF TV Antennas feature a rugged, field-proven design for worry-free long life. They offer the flexibility of side mounting on existing towers and provide unlimited pattern control for directional applications. The TH Deltawing uses a pair of batwing shaped radiating elements in a panel configuration designed for minimum weight and windloading. The design optimizes
impedance and radiation performance. The Deltawing design allows for wrap-around mounting to existing structures or the installation on custom designed support splines. Typically used in one to six around configurations, the azimuth pattern characteristics are unlimited. In addition, the impedance bandwidth of the Deltawing element allows for the combining or multiplexing of multiple frequencies into a common array. The Deltawing antenna is designed and constructed to operate in severe environments. Radiating elements and ground screens are fabricated of structural steel and are hot-dip galvanized. Feed point radomes are standard and protect the feed point area from ice buildup to minimize VSWR degradation during icing conditions. For severe icing conditions, full slot radomes are available. Contact factory for mechanical specifications. ## TH Series - Deltawing THB-O3 Directivity=1.3 THA-O4 Directivity=1.3 THA-T160 Directivity=1.6 THA-MC2 Directivity=2.5 THA-S4 Directivity=1.9 ## TH Series - Deltawing VHF Antenna Elevation Gain | Bays | Band | F (MHz) | 0% Null Fill
0° tilt | | 15% Null Fill
.75° tilt | | |--|----------------------------|-----------------|--|--|--|--| | 1
2
3
4
5
6 | L
L
L
L | Ch 2
54-60 | 1.2
2.2
3.2
4.3
5.3
6.5 | 0.64
3.40
5.11
6.32
7.28
8.13 | -
3.4
4.1
5.1
6.1 |
5.29
6.11
7.04
7.82 | | 1
2
3
4
5
6 | L
L
L
L | Ch 3
60-66 | 1.2
2.3
3.4
4.5
5.6
6.7 | 0.64
3.54
5.28
6.52
7.48
8.26 | -
3.2
4.3
5.3
6.3 | 5.01
6.29
7.23
8.01 | | 1
2
3
4
5
6 | M
M
M
M
M | Ch 4
66-72 | 1.2
2.2
3.2
4.3
5.4
6.4 | 0.64
3.40
5.11
6.32
7.28
8.06 | 3.0
4.1
5.1
6.1 |
4.83
6.11
7.05
7.82 | | 1
2
3
4
5
6 | M
M
M
M
M | Ch 5
76-82 | 1.2
2.3
3.4
4.5
5.7
6.8 | 0.64
3.58
5.33
6.57
7.53
8.31 | 3.2
4.3
5.4
6.4 | 5.07
6.34
7.28
8.07 | | 1
2
3
4
5
6 | M
M
M
M
M | Ch 6
82-88 | 1.2
2.3
3.4
4.6
5.7
6.8 | 0.64
3.58
5.34
6.58
7.54
8.33 | 3.2
4.3
5.4
6.4 | 5.07
6.35
7.30
8.08 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H | Ch 7
174-180 | 2.1
3.1
4.5
5.2
6.2
8.3
10.3
12.4 | 3.21
4.95
6.53
7.15
7.92
9.18
10.14
10.93 | 2.9
3.9
4.9
5.9
7.9
9.9
11.9 | | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H | Ch 8
180-186 | 2.1
3.2
4.3
5.3
6.4
8.5
10.7
12.8 | 3.32
5.07
6.31
7.27
8.06
9.31
10.28
11.07 | 3.0
4.1
5.1
6.1
8.1
10.2
12.2 | 4.79
6.08
7.03
7.82
9.09
10.07
10.87 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H | Ch 9
186-192 | 2.2
3.3
4.4
5.5
6.6
8.8
11.0
13.2 | 3.40
5.17
6.42
7.39
8.19
9.44
10.41
11.20 | -
3.1
4.2
5.2
6.2
8.3
10.5
12.6 | | | Bays | Band | F (MHz) | | ull Fill
tilt | | lull Fill
° tilt | |--|---------------------------------|-------------------|--|--|---|--| | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H
H | Ch 10
192-198 | 2.2
3.3
4.4
5.5
6.6
8.8
11.0
13.2 | 3.45
5.22
6.46
7.43
8.22
9.47
10.43
11.22 | 3.1
4.2
5.2
6.3
8.4
10.5
12.7 | | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H
H | Ch 11
198-204 | 2.3
3.4
4.6
5.7
6.9
9.2
11.4
13.7 | 3.56
5.34
6.60
7.57
8.36
9.61
10.58
11.38 | 3.2
4.3
5.4
6.5
8.7
10.9
13.1 | 5.05
6.36
7.32
8.11
9.39
10.38
11.18 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H | Ch 12
204-210 | 2.3
3.5
4.7
5.8
7.0
9.4
11.7
14.1 | 3.63
5.42
6.68
7.66
8.46
9.71
10.69
11.48 | 3.3
4.4
5.5
6.6
8.9
11.2
13.4 | 5.13
6.45
7.41
8.20
9.49
10.48
11.28 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H | Ch 13
210-216 | 2.3
3.5
4.7
5.9
7.1
9.5
11.9 | 3.69
5.48
6.76
7.73
8.53
9.78
10.76
11.55 | 3.3
4.5
5.6
6.7
9.0
11.4
13.7 | 5.20
6.51
7.47
8.27
9.56
10.55
11.35 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H | Ch E11
216-223 | 2.4
3.6
4.8
6.0
7.2
9.6
12.0
14.5 | 3.71
5.52
6.79
7.77
8.57
9.83
10.81
11.60 | 3.3
4.4
5.6
6.8
9.1
11.5
13.8 | 5.24
6.46
7.51
8.31
9.60
10.60
11.40 | | 2
3
4
5
6
8
10
12 | H
H
H
H
H
H
H | Ch E12
223-230 | 2.4
3.6
4.8
6.1
7.3
9.8
12.2
14.7 | 3.77
5.57
6.84
7.83
8.63
9.89
10.87
11.66 | 3.4
4.6
5.7
6.9
9.3
11.6
14.0 | 5.29
6.61
7.57
8.37
9.66
10.66
11.46 | #### **TLS-V Series** TLS-VS170 Directivity=1.7 - · Economical alternative to panel antenna - Extremely low weight and windload - Available in 4, 8 and 12 bay configurations - Input power to 15 kW peak - Includes standard mounting brackets - Quick delivery - Radome and feedpoint ice shield optional - Available in CPOL or EPOL The TLS-V Series antenna is designed as a low cost, low windload alternative for the VHF broadcaster. This antenna is designed for quick compliance with FCC deadlines, gap filling, translator/repeater markets and standby facilities. The TLS-V can be used for either NTSC or DTV service. The TLS Series antenna designed for side mounting on an existing structure. #### **Specifications** Input size: 1-5/8" EIA VSWR: 1.10:1.0 Channel Electrical Beam Tilt: 1.0 Degrees Typical | Antenna | Peak Power
Handling | RMS Gain | Peak Gain | |---------|------------------------|----------------|----------------------------------| | TLS-V4 | 5 kW | 4.0 (6.02dB) | 6.8 (8.33dB) to 12.4 (10.93dB) | | TLS-V8 | Up to 10 kW | 8.0 (9.03dB) | 13.6 (11.34dB) to 24.8 (13.94dB) | | TLS-V12 | Up to 15 kW | 12.0 (10.79dB) | 20.4 (13.10dB) to 37.2 (15.71dB) | 4.0 (6.02dB) RMS Gain 8.0 (9.03dB) RMS Gain 12.0 (10.79dB) RMS Gain #### **TLSV-BB Series** The TLSV-BB Series antenna is designed as a broadband, low-cost, low-windload alternative for the high band VHF broadcaster. #### **Key Features** - Broadband: Channels 7-13 - Economical alternative to panel antennas - Low weight and 75% less windload than panels - Input powers up to 22.5 kW avg. - Includes standard mounting brackets - Quick delivery - Available in HPOL or EPOL - Designed for side mounting on existing structures - Stripline slot design - 4, 8 and 12 bays - Omnioid Azimuth Pattern #### **Specifications** - Polarization: Horizontal or Elliptical - Beam Tilt: 2 Degrees Standard - Input Size: 1 5/8" EIA (per 4 section module) - VSWR (Max 174-213 MHz): < 1.25:1 - Input Power: 7.5 kW avg. per 4 Bay Section - Azimuth Directivity: 1.7 #### TLSV4-BB RMS Gain: 4 • Peak Gain: 6.8 TLSV8-BB RMS Gain: 7.9 • Peak Gain: 13.4 TLSV12-BB RMS Gain: 10.7 • Peak Gain: 18.2 ## TLSV-BB Series (continued) **Typical Mechanical Characteristics*** | | Channel | Height (ft) | CaAc (ft²) | Weight (lbs) | |------------|---------|-------------|------------|--------------| | | 7 | 23.3 | 25.4 | 465 | | TLVS-V4 | 8 | 22.6 | 24.6 | 450 | | slot cover | 9 | 21.9 | 23.9 | 435 | | | 10 | 21.3 | 23.2 | 420 | | | 11 | 20.7 | 22.5 | 405 | | | 12 | 20.1 | 21.9 | 390 | | | 13 | 19.6 | 21.3 | 375 | | | 7 | 23.3 | 33.6 | 560 | | TLVS-V4-R | 8 | 22.6 | 32.6 | 525 | | | 9 | 21.9 | 31.6 | 505 | | | 10 | 21.3 | 30.7 | 490 | | | 11 | 20.7 | 29.8 | 465 | | | 12 | 20.1 | 29.0 | 445 | | | 13 | 19.6 | 28.2 | 425 | | | 7 | 23.3 | 33.6 | 580 | | TLVS-V4-V | 8 | 22.6 | 32.6 | 545 | | | 9 | 21.9 | 31.6 | 525 | | | 10 | 21.3 | 30.7 | 510 | | | 11 | 20.7 | 29.8 | 485 | | | 12 | 20.1 | 29.0 | 465 | | | 13 | 19.6 | 28.2 | 445 | TIA/EIA-222-F, Excludes mounts = Radomed V = with VPol CaAc = Force Coefficient Projected Area (4 foot lightning protector and beacon included) x = Channel number ^{*}Contact factory for application-specific mechanical details. Dielectric products are represented in 90 countries around the world. With the rapid expansion of communications, Dielectric is positioned to service the broadcast needs of small and large stations, DTV and NTSC, FM and specialty RF systems, complete systems and components. Angola Argentina Australia Austria Belgium Belize Benin Botswana Brazil Canada Chad Chile China Colombia Costa Rica Denmark Dominican Republic Ecuador Eduador Egypt El Salvador England Ethiopia Finland France Germany Ghana Greece Greenland Guam Hong Kong Iceland India Indonesia Ireland Israel Italy Japan Jordan Korea Kuwait Lebanon Liberia Madagascar Malaysia Mali Malta Mauritania Mauritius Mexico Mongolia Morocco Nepal Netherlands New Zealand Nicaragua Nigeria Norway Oman Papua New Guinea Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Saipan Sao Tome Sao Tome Saudi Arabia Singapore South Africa Spain Sri Lanka Sweden Switzerland Syria Taiwan Thailand Togo Uganda **United States** Venezuela Vietnam Yemen Zambia Zimbabwe Specifications subject to change without notice.