Efficient UHF Tunable Waveguide TE10 Mode Filter

Derek J. Small

Efficient UHF Tunable Waveguide TE10 Mode Filter

Today's Discussion

• Why

				÷			•	Ļ	0	N	Si	ze	а	nd	0	pe	era	ati	ng	; N	10	de	Ir	nflu	Je	nc	e	Eff	ic	ieı	nc	y	•				
							•	С	05	it (of	Ef	fi	cie	end	су	•									•										•	
						0	0	А	ve	era	ıg	e a	an	d	Pe	ak	P	ov	ve	r																	
								T	ur	al	olo	e١	Na	av	eg	uio	de	Fi	lte	er																	
									•	•	De Te	esi st	gr R	า es	ult	S																					

1st Dual-Mode Filter for broadcast television, 1994 First speeding ticket for Karen

Couldn't Develop a Tunable Dual-Mode Cavity

Efficiency

- Lowers operating cost
- Cooler operating temperature
 - Less heat load
 - Lower loss under power

Re-pack logistics

- Manufacture a "one size fits all" filter
 - Ease manufacturing burden
 - Lower's cost
 - Reduces delivery time
 - Consistent install footprint
 - Simplifies and reduces install time
 - Minimizes install resources
 - No liquid cooling to worry about

Increase peak power capability

More voltage headroom for ATSC 3.0

Efficient Tunable Waveguide Filter

Size Matters

- Obtain highest theoretical Q
 - Reduce current/loss densities by distributing over a larger surface

Minimize surface protrusions

- Tuning devices/resonator
- Protrusions increase current/loss density

• Construction technique that aids removal of

heat					
• ••	Rac	liati	ion		
•••	Cor	iveo	ctio	n	

Conduction

Loss, Filter Order and Efficiency

	L	oss (dB)	
605 MHz		6-pole	
	W/G	Transitional	
Q _u	24 K	17 K	
 f _o	.14	.20	
Integrated (ATSC 1.0) +/- 2.69MHz	.16	.23	· · · · · ·
Integrated (ATSC 3.0) +/- 2.915MHz	.17	.24	
Efficiency, ATSC 3.0	96.1	94.6	
• • • • • • • • • •			

Annual \$ Difference, Transitional vs Waveguide Using ATSC 3.0

Difference in Annual Filter Operating Cost

Surface Protrusions and Efficiency Effect on Surface Loss Density

Transitional Lower Q

Waveguide High Q

VDLES MECHANICAL SHOCK

SUFFERS from MECHANICAL SHOC

Reduced surface loss density _ of Stored Energy Tunable coaxial/transitional mode cavity Fixed tuned waveguide cavity 11 inch GPS • • Optimized waveguide cavity Significant probe penetration .3 inch probe penetration EASY TO TUNE AND LOCK, MORE STA DIFFICULT TO TUNE AND LOCK DOWN

Reduce current density

Peak Power

Peak power is limited by the breakdown of gas (air) molecules in the presence of high electric fields.

Small gaps, rough surfaces and sharp edges increase the electric field density and become more susceptible to breakdown.

Breakdown is also a function of air pressure, temperature, frequency and pulse length but will not be included in this paper.

Accepted rule of thumb is to use 2.28×10^6 V/m as a breakdown threshold along with an appropriate safety factor.

 $7 x 10^4 a \delta (\log \frac{b}{a})(1)$

Peak Power, Bandpass Filter

Peak Power, Bandpass Filter

Stored energy in each resonator, SE_i

- Normalized to a nJ/W basis simplifies analysis using HFSS
- Integrate over passband
 - ATSC 1.0 \approx 52 nJ/W, resonators *i*= 3 & 4
 - ATSC 3.0 \approx 56 nJ/W, resonators *i*= 3 & 4

Peak Power, Coaxial/Transitional Cavity GPS = 11 inches

$$P_{max} = \left(\frac{E_{max}}{E_{norm,i}}\right)^2 / SE_i \quad *$$

Stored Energy = 1nJ $E_{norm,i}$ = 590 V/m

x 7.2 Greater Peak Power Handling

• Increased efficiency

Summary

• From 95% (transitional) to 96.5% (Worse case)

									•	Re	du	ce	op	ber	ati	ing	g C	os	st,	ар	p	rox	(.)	\$2	70	0	@	5	Эk	W										
						4			8																	8				8		3		3				3		
14							4			_		10			- Ka				100	10		0				101			0	100	- 6		-		-181		100	- 18	- 14	
									•	Pro	Ddi	ICE	es	les	s r	lea	at	.0																					0	
									0	0	0		•		0		0		•			0		0	0															
									0	Lai	ge	rs	ur	Tac	e	ar	59	t	n c	na	na	ige	e r	iea	JE	re	m	SV	aı											
										Cr	0.01	or					25	-	aili																					
									•	GI	eal	.ei	V	Лю	ige		ah	Jai	JII	ιιy																				
									•	Fa		r ta		Tun																										
										La.	SIC			un	Co																									
									•	M	re	R	h	ust																										
										IVIC		9.,		ust																										
0	0		9 (0 1	0	0	0	0	6	9 (0 6	0) (9	0	0	0	0	6) (0	0	0	0	0	6		0	0	0	0	0	0		

We need to make filters out of waveguide again!

Waveguide, Greater Peak Power Handling

Coupling b/w two resonators is the displacement of the resonant frequencies: Δf

Normalized coupling co-efficient b/w resonators *i* and *j*: $M_{i,j} = \frac{\Delta f}{hw}$

Constant coupling with frequency is desired for easy tune-ability

Waveguide Cavity Coupling 2 Post Coupled Resonators

Test Results

Patents Pending

1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State

Tr1 S21 Log Mag 10.00dB/ Ref 0.000dB [F2]

0.000

Test Results

Patents Pending

1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State

▶ [12] S21 Log Mag 10.00dB/ Ref 0.000dB [F2] Tr2 S11 Log Mag 10.00dB/ Ref 0.000dB [F2]

0.000

Test Results

Patents Pending

1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Instr State

Tr1 S21 Log Mag 10.00dB/ Ref 0.000dB [F2]

0.000

Filter Power Testing

Rohde & Schwarz 9 kW solid state 6 MHz DVB-T Exciter

Patents Pending

- 6 or 8 Poles
- Convection Cooled

Coaxial or Waveguide Ports	
• Tunable 14-36	
 Insertion loss 0.1215dB max, mid-band 	· · · · · ·
• 32" x 23" x 55" (81 cm x 59 cm x 150 cm)	
• 430lbs (195kg)	

Patents Pending

- Forced Air Cooling
- 2.4 kW dissipated @ 60 kW (0.682 Tons of AC)

Bullet Proof Waveguide Filter

Cylindrical Waveguide has exceptional peak power handling

THANKS FOR YOUR TIME! ANY QUESTIONS?

ectri

@Dielectric_LL Dielectric.com ¥

Trusted for Decades. Ready for Tomorrow.

(R)