

Efficient RF Design and Implementation of Translator/Booster Stations

Today's Presentation

Attentive crowd

- FM Transmission Capital Equipment Cost Reduction
 - Simplified Designs
 - Part reduction
 - Manufacturing technique
 - Material choice
- Filter/Combiner Example
- Antenna Example
 - Pattern study, finite element model vs range
- Summary

Reducing FM Translator Transmission Costs

Specify product that reduces initial capitol expense and increases operational efficiency

- Starts with Sales
 - Communication and quick answers to problems
- Engineering
 - Simplify design
 - Reduce part count
 - Common parts with UHF products
 - Material choice
 - Minimize solder, braze and welding
 - Volume purchasing
 - Sheet metal
 - Aluminum where possible
- Design to reduce RF tuning and pattern study time

#NABShow

REDUCE COST, NOT PERFORMANCE

Minimize Welding and Brazing Operations

Use Aluminum where Possible

• Filters

- Eigenmode solution for current density
- Use Aluminum where no loss in performance

Components

• Aluminum outer conductor where possible (where differential expansion is not an issue)

Jsurf [A/n] 4.2836E-084 3.9980E-084 3.7225E-084 3.7225E-084 2.857E-084 2.857E-084 2.2946E-084 1.7234E-084 1.7234E-084 1.14276E-084 1.14276E-084 3.7334E-084 1.14276E-084 3.7334E-084 1.14276E-084 3.7357E-083 1.8557E-083 1.8166E-082

10 Channel LPFM Combiner

Material Cost

Copper: \$2.66/lb

Aluminum: \$0.89/lb

- Less \$
 - Material cost
 - Manufacturing time
 - Labor
- Performance
 - Small, more compact
 - No efficiency hit

Three Channel Branch Combiner

- Tee example
 - Three CH combiner
- Performance
 - Allows for smaller footprint

2 Channel Combiner, Closer Look

2-Channel Manifold

- Filters placed $\approx n \lambda/2$ from junctions
- Tees spaced $\approx n \lambda/2$
- Short $\approx n \lambda/4$ from Tee
- Short can be replaced w filter to eliminate a Tee

Two Channel Branch Combiner

- Simplified design
 - Elimination of Tees and delay lines
 - One filter "box"
- Band tunable
 - Tee/delay line design not easily tuned
 - Spacing set by rejection levels
- Lower cost
 - Reduced part count
 - Same design for all channels
 - Less labor: manufacture, assemble, test
- Easy Install
 - Smaller size
 - Space limited sites

Sales took the picture in the chamber

Two Channel Branch Combiner

Load, Multiple Coupled Combiner

- 3-pole design
- 96.1 MHz and 98.5 MHz
- Loss < .45 dB
- VSWR < 1.08:1
- Isolation > 40dB

Where Content Comes to Life

#NABShow

Typical FM Filter Topology

- Sequentially coupled from input to output
- Chebshev g number from lowpass prototype
- Determined normalized coupling coefficients, M_{i,i}
- Coupling bandwidth, $\Delta F_{1,2} = BW_r * M_{1,2}$

Number of Poles	Min. CH Spacing, MHz		
Chebyshev	CIF	Junction	
2	8.4	9.0	
3	1.6	2.4	
4	.8	1.2	

dF_{2,3} dF_{1,2}

Coupling routing diagram

Crossed Coupled Technology

- More recently, X-coupled filters have been used to provide greater rejection
- Filters designed using insertion loss theory

$$\frac{V_{out}}{V_{in}} = \frac{a_m S^m + a_{m-1} S^{m-1} + \dots + a_1 S^1 + a_0}{b_n S^n + b_{n-1} S^{n-1} + \dots + b_1 S^1 + b_0}$$

Tri-Section, normalized coupling coefficients
extracted from polynomials

#NABShow

Multiple Source Coupling

- Tighter channel spacing for given filter order
- Efficiency gain
- Size reduction
- Easy implementation

	S	1	2	3	L
S	0	1.36	0	052	0
1	1.36	0	1.47	0	0
2	0	1.47	0	1.41	0
3	052	0	1.41	0	1.39
L	0	0	0	1.39	0

#NABShow

Multiple Source Coupling and Efficiency

• Tighter channel spacing for given filter order

Multiple Source Coupling and Efficiency

- Allows for greater passband width
- Reduces loss
- Increases rejection to eliminate need for higher order filter

Ring Style Evolution: 1967 - Today

RCA's BFC Introduced: NAB 1967 by Matti Siukola Dielectric's DCRM Example of Present Day FM Ring Style

Low Power Translator Antenna

Dielectric's DCRT

- Ring style antenna converted to the low power world
- H/V ratio controlled by helical pitch stable across the FM band
- Assembled and tuned on site for desired frequency according to settings charts
- Impedance controlled by arm length and feed strap position

Low Power Translator Antennas

Stub Loop

 H/V ratio and impedance controlled by feed and stub length

Dielectric's DCRT

 H/V ratio and impedance controlled independently

DCRT tunes easily with consistent H/V ratio

Translator Pattern Studies

- Traditional method : Scaled or full size model
 - Can take longer with more antennas in the queue
 - More expensive for labor intensive patterns
 - Not required for translator antennas
- Alternative method : 3-D model evaluated using software (such as HFSS)
 - Same options as a physical model (parasitics, bay tuning, etc.)
 - Fewer resources required, faster results*
 - Cost effective in most cases
 - * With good starting point

Pattern Study Example, HFSS

DCRT

- Translator application
- Single bay
- Directional
- Tower, 18.5" face, 1.5" leg, Z braced

Pattern Study Example, HFSS

<u>DCRT</u>

- Import or draw tower
- Pull bay from models
- Use pattern history for starting point
 - Horizontal parasitic
 - Vertical parasitic
 - Orientation on tower

Start with one horizontal parasitic

- Distance and angle from bay optimized
- Optimize length

Start with one horizontal parasitic

• Optimized length

0.20

-180

Start with one horizontal parasitic

• Optimized length

-90

-150

Pattern Study Example, HFSS

Start with one horizontal parasitic

• Optimized length

Pattern Study Example, HFSS

DCRT

• Vertical variation with horizontal parasitic

- H pol
- V pol

DCRT tunes easily

Summary/Conclusions

- Starts with Sales
 - Communication and quick answers to problems (Don't let them take pictures)
- Engineering
 - Simplify design
 - Reduce part count
 - Common parts with UHF products
 - Minimize solder, braze and welding
 - Volume purchasing
 - Sheet metal
 - Aluminum where possible
- Design to reduce RF tuning and pattern study

ms			4	URE
		~0 ^C	PIC	
NEF	D ^G	<u>,0</u>		

REDUCE COST, NOT PERFORMANCE

