Today’s Presentation

- FM Transmission Capital Equipment Cost Reduction
 - Simplified Designs
 - Part reduction
 - Manufacturing technique
 - Material choice
- Filter/Combiner Example
- Antenna Example
 - Pattern study, finite element model vs range
- Summary
Reducing FM Translator Transmission Costs

Specify product that reduces initial capital expense and increases operational efficiency

- Starts with Sales
 - Communication and quick answers to problems
- Engineering
 - Simplify design
 - Reduce part count
 - Common parts with UHF products
 - Material choice
 - Minimize solder, braze and welding
 - Volume purchasing
 - Sheet metal
 - Aluminum where possible
- Design to reduce RF tuning and pattern study time

As asked for by Sales
Changes in Machining Technology
Minimize Welding and Brazing Operations
Use Aluminum where Possible

- **Filters**
 - Eigenmode solution for current density
 - Use Aluminum where no loss in performance

- **Components**
 - Aluminum outer conductor where possible (where differential expansion is not an issue)
Material Cost

Copper: $2.66/lb

Aluminum: $0.89/lb
Coax Tee

- **Less $**
 - Material cost
 - Manufacturing time
 - Labor

- **Performance**
 - Small, more compact
 - No efficiency hit
Three Channel Branch Combiner

- **Tee example**
 - Three CH combiner

- **Performance**
 - Allows for smaller footprint
2 Channel Combiner, Closer Look

2-Channel Manifold

- Filters placed $\approx n \lambda/2$ from junctions
- Tees spaced $\approx n \lambda/2$
- Short $\approx n \lambda/4$ from Tee
- Short can be replaced with filter to eliminate a Tee
Two Channel Branch Combiner

- **Simplified design**
 - Elimination of Tees and delay lines
 - One filter “box”

- **Band tunable**
 - Tee/delay line design not easily tuned
 - Spacing set by rejection levels

- **Lower cost**
 - Reduced part count
 - Same design for all channels
 - Less labor: manufacture, assemble, test

- **Easy Install**
 - Smaller size
 - Space limited sites

Sales took the picture in the chamber
Two Channel Branch Combiner

Load, Multiple Coupled Combiner

- 3-pole design
- 96.1 MHz and 98.5 MHz
- Loss < .45 dB
- VSWR < 1.08:1
- Isolation > 40dB
More Savings with Multiple Source Coupling

Typical FM Filter Topology

- Sequentially coupled from input to output
- Chebyshev g number from lowpass prototype
- Determined normalized coupling coefficients, $M_{i,j}$
- Coupling bandwidth, $\Delta F_{1,2} = BW_r \times M_{1,2}$

<table>
<thead>
<tr>
<th>Number of Poles</th>
<th>Chebyshev</th>
<th>Min. CH Spacing, MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIF</td>
<td>Junction</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.4</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Coupling routing diagram
More Savings with Multiple Source Coupling

Crossed Coupled Technology

- More recently, X-coupled filters have been used to provide greater rejection
- Filters designed using insertion loss theory
 \[
 \frac{V_{out}}{V_{in}} = \frac{a_m S^m + a_{m-1} S^{m-1} + \cdots + a_1 S + a_0}{b_n S^n + b_{n-1} S^{n-1} + \cdots + b_1 S + b_0}
 \]
- Tri-Section, normalized coupling coefficients extracted from polynomials

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>M_{1,2}</td>
<td>M_{1,3}</td>
</tr>
<tr>
<td>2</td>
<td>M_{1,2}</td>
<td>0</td>
<td>M_{2,3}</td>
</tr>
<tr>
<td>3</td>
<td>M_{1,3}</td>
<td>M_{2,3}</td>
<td>0</td>
</tr>
</tbody>
</table>

Places zero above passband
More Savings with Multiple Source Coupling

Multiple Source Coupling

- Tighter channel spacing for given filter order
- *Efficiency gain*
- Size reduction
- Easy implementation

Source multi-resonator coupling, 2 transmission zeros

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>1.36</td>
<td>0</td>
<td>-.052</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.36</td>
<td>0</td>
<td>1.47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1.47</td>
<td>0</td>
<td>1.41</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-.052</td>
<td>0</td>
<td>1.41</td>
<td>0</td>
<td>1.39</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.39</td>
<td>0</td>
</tr>
</tbody>
</table>
More Savings with Multiple Source Coupling

Multiple Source Coupling and Efficiency

- Tighter channel spacing for given filter order

Source multi-resonator coupling, 2 transmission zeros
More Savings with Multiple Source Coupling

Multiple Source Coupling and Efficiency

- Allows for greater passband width
- Reduces loss
- Increases rejection to eliminate need for higher order filter

Source multi-resonator coupling, 2 transmission zeros
Ring Style Evolution: 1967 - Today

RCA’s BFC
Introduced: NAB 1967 by Matti Siukola

Dielectric’s DCRM
Example of Present Day FM Ring Style
Low Power Translator Antenna

Dielectric’s DCRT

• Ring style antenna converted to the low power world
• H/V ratio controlled by helical pitch – stable across the FM band
• Assembled and tuned on site for desired frequency according to settings charts
• Impedance controlled by arm length and feed strap position
Low Power Translator Antennas

- **Stub Loop**
 - H/V ratio and impedance controlled by feed and stub length

- **Dielectric’s DCRT**
 - H/V ratio and impedance controlled independently

DCRT tunes easily with consistent H/V ratio
• **Traditional method**: Scaled or full size model
 - Can take longer with more antennas in the queue
 - More expensive for labor intensive patterns
 - *Not required for translator antennas*

• **Alternative method**: 3-D model evaluated using software (such as HFSS)
 - Same options as a physical model (parasitics, bay tuning, etc.)
 - Fewer resources required, faster results*
 - Cost effective in most cases

* With good starting point
Pattern Study Example, HFSS

DCRT

- Translator application
- Single bay
- Directional
- Tower, 18.5” face, 1.5” leg, Z braced
Pattern Study Example, HFSS

- Import or draw tower
- Pull bay from models
- Use pattern history for starting point
 - Horizontal parasitic
 - Vertical parasitic
 - Orientation on tower

Start with one horizontal parasitic
 - Distance and angle from bay optimized
 - Optimize length
Pattern Study Example, HFSS

Start with one horizontal parasitic
- Optimized length
Start with one horizontal parasitic
- Optimized length
Pattern Study Example, HFSS

Start with one horizontal parasitic
- Optimized length
Pattern Study Example, HFSS

DCRT

- Vertical variation with horizontal parasitic
Pattern Study Example, HFSS

DCRT tunes easily

- H pol
- V pol
Summary/Conclusions

• Starts with Sales
 • Communication and quick answers to problems
 (Don’t let them take pictures)

• Engineering
 • Simplify design
 • Reduce part count
 • Common parts with UHF products
 • Minimize solder, braze and welding
 • Volume purchasing
 • Sheet metal
 • Aluminum where possible

• Design to reduce RF tuning and pattern study