Antenna Simulation: Tackling RePack and Beyond Presented By: Nicole J. Starrett

AGENDA

- History of Antenna Design at
 Dielectric
- Physical Single layer Data Process
- Transition to Software Design
- Post RePack Applications
- Conclusions

History of Antenna Design at Dielectric

 RCA shipped the first slotted coaxial antenna in 1952 and their 500th in 1982

Dielectric acquired RCA antenna broadcast division in 1985 Single layer data process developed by RCA in the 1960's and continues to be used today

Physical Single Layer Data Process -Overview

- Review antenna specifications
- Choose appropriate physical model from inventory
- Model set up in anechoic chamber
- Azimuth pattern and axial ratio development
- Transfer model to test stand
- Determine characteristic data matrix
- Extract specific design using proprietary software

Trusted for Decades. Ready for Tomorrow.

4

Model Set Up/Azimuth Pattern Development

Process:

- Pattern is adjusted with fins, directors, or other pattern shapers
- Vertical component adjusted with floating or "Z" Dipoles

Restrictions:

- Model set up/pattern development time
- Short lead times limit model choices

(150-200 models in storage)

- Added expense and time for new models
- Tolerancing variance on steel poles (up to 12% variance for wall thickness)
- Anechoic chamber variance not pure free space
- Human error

Trusted for Decades. Ready for Tomorrow.

r other pattern shapers Ig or "Z" Dipoles

:hickness) ee space

Characteristic Data Matrix

Process:

- Adjust coupling for different loading levels
- Adjust slot length for phase variance

Restrictions:

- Machining time for each coupler size ٠
- Calibration error
- Lengthy measurement process
 - (over 600 manual measurements)

Trusted for Decades. Ready for Tomorrow.

6

Transition to Software Design – Pre-RePack

To prepare for RePack:

- Tested model set up against extensive library of historic data
- Developed robust customizable HFSS computer models
- Build library of 40+ computer models

Software enables:

- Less lead time
- Reduced non-recurring engineering cost
- High level of confidence in measurements

Software Single Layer Data Process - Overview

- **Review antenna specifications**
- Choose appropriate HFSS computer model from library
- Set all variables to desired values
- Azimuth pattern and axial ratio development
- Determine characteristic data matrix
- Extract specific design using proprietary software

HFSS Computer Model Set-Up

9

HFSS Computer Model Analysis

- Model is broken down into a tetrahedral mesh
- Maxwell's Equations solved at each vertex

Trusted for Decades. Ready for Tomorrow.

10

HFSS Azimuth Pattern Development

- Fins, directors, and other pattern shapers are used to adjust the shape of the horizontal component
- Floating or "Z" dipoles are used to adjust amount of vertical polarization and phase
- H/V ratio and axial ratio are set per specifications

HFSS Characteristic Data Matrix

- Amount of coupling and slot length varied
- Solved at multiple frequencies across the channel band
- Desired amplitude and phase overlaid to extract a specific design

Trusted for Decades. Ready for Tomorrow.

.

• Time: design time reduced from 3 weeks to 3 days

- Time: design time reduced from 3 weeks to 3 days
- Space: repurposed over 6000 ft² of manufacturing/storage space ۲

- Time: design time reduced from 3 weeks to 3 days
- Space: repurposed over 6000 ft² of manufacturing/storage space
- Customization: Computer models allow more diverse designs •

- Time: design time reduced from 3 weeks to 3 days
- Space: repurposed over 6000 ft² of manufacturing/storage space
- Customization: Computer models allow more diverse designs
 - Environment: eliminates reflections, true free space environment

- Time: design time reduced from 3 weeks to 3 days
- Space: repurposed over 6000 ft² of manufacturing/storage space
- Customization: Computer models allow more diverse designs
 - Environment: eliminates reflections, true free space environment
- Accuracy: eliminates tolerancing/machining errors, models have

- Time: design time reduced from 3 weeks to 3 days
- Space: repurposed over 6000 ft² of manufacturing/storage space
- Customization: Computer models allow more diverse designs
- Environment: eliminates reflections, true free space environment
- Accuracy: eliminates tolerancing/machining errors, models have
- ciency: optimetric set-ups allow simultaneous designs

- Single Frequency Network (SFN)
 - Antenna development
 - Network planning
- Voltage analysis for ATSC 3
 - Planning for higher PAPR
 - Modify geometries in real time for higher power rating

Trusted for Decades. Ready for Tomorrow.

20

ng

Examine existing tower sites in the designated market area (DMA) •

- Examine existing tower sites in the designated market area (DMA)
- Choose desirable sites and apply omni directional antenna at each •

- Examine existing tower sites in the designated market area (DMA)
- Choose desirable sites and apply omni directional antenna at each
- Reduce power in each direction until coverage and interference • guidelines are met, creates "perfect" patterns

- Examine existing tower sites in the designated market area (DMA)
- Choose desirable sites and apply omni directional antenna at each
- Reduce power in each direction until coverage and interference guidelines are met, creates "perfect" patterns
 - Design antennas to approximately match each SFN pattern

- Examine existing tower sites in the designated market area (DMA)
- Choose desirable sites and apply omni directional antenna at each
- Reduce power in each direction until coverage and interference guidelines are met, creates "perfect" patterns
- Design antennas to approximately match each SFN pattern
- Apply "real" patterns to SFN
 - patterns as needed

Trusted for Decades. Ready for Tomorrow.

30

ATSC 3 has higher PAPR, PAPR and peak voltage are related by:

$$V_p = \sqrt{2Z_0 P_{avg} PAPR_{Linear}}$$

Electric field near a conductor is inversely proportional to the lacksquareradius of curvature

$$n \approx \frac{2V}{r\ln\left(1+\frac{4d}{r}\right)}$$

Electric field in a coaxial line

Breakdown between coupler and inner in a slotted coaxial antenna:

$$V_b = \frac{E_m}{E_0} = \frac{2a\left[ln\left(\frac{b}{a}\right)\right]}{r\left[ln\left(1 + \frac{4d}{r}\right)\right]}$$

PAPR and voltage breakdown are related:

$$APR = \frac{V_b^2 F_V^2}{2n^2 SF^2 Z_0 P_{avg} C_{vswr}^2}$$

Therefore: internal antenna geometry becomes increasingly important with higher PAPR

- Need to understand where high voltage areas exist within the antenna
- Adjust antenna geometry to reduce high voltage areas (increase breakdown voltage)

Use this design process to create true ATSC 3 ready products

Summary

- Design techniques remain the same, dating back to RCA developed process
- Single layer Data process adapted for HFSS software
 - Reduced lead time
 - Customizable antenna designs
 - Increases accuracy and efficiency
- Process can be utilized further
 - Plan, design, and optimize SFN sites
 - Examine ATSC 3 voltage breakdown for higher PAPR
- Future of broadcast depends on continuous advancement

THANKS FOR YOUR TIME!

Deeetric®

Trusted for Decades. Ready for Tomorrow.

f y 0 in D