

FM Antennas – A Comparison and Evaluation of Fundamental Side Mount Designs

Presented by: John L. Schadler

NAB Breakfast

Date: 4/14/2014

This Mornings Presentation

- A brief history of CP FM antennas
- An comparison of the two fundamental side mounted FM antenna designs
 - Broadband High Power
 - Quadrupole ring style
 - Tiller
- The role of horizontal polarization in new automotive antenna design

1967

Matti Siukola "Dual Polarization FM Broadcasting with a Single Antenna" NAB 1967

RCA - BFC

BFC was both power limited and bandwidth limited

Bandwidth limited : 600 kHz Average Power limited : 4 kW

Q of an antenna is directly related to its volume in space

$$Q = \frac{1}{(\beta a)^3} + \frac{1}{\beta a}$$

a is the volume radius

BFC

The fundamental bandwidth for antennas

$$bw = \frac{\pi}{Qln\left\{\frac{VSWR + 1}{VSWR - 1}\right\}}$$

VSWR is the maximum allowable within the passband

Simply making the C bay bigger increases the bandwidth BUT at the expense of the circularity.

1973 Introduction of the BFG. Tri-pole ring antenna

1978 Don Hymas "A New High Power Circularly Polarized FM Antenna" 1978 IEEE Symposium

Figure 3 - Horizontal Pattern -Horizontally Polarized Component

Circularity +/- .65 dB

Figure 4 - Horizontal Pattern -Vertically Polarized Component

Circularity +/- .25 dB

1978

United States Patent [19]

Silliman

OMNIDIRECTIONAL BROADBAND CIRCULARLY POLARIZED ANTENNA [11] 4,109,255

[45] Aug. 22, 1978

References Cited
U.S. PATENT DOCUMENTS

ERI -Rototiller

[56]

Power handling substantially increased with the addition of corona balls

The electric field intensity near a conductor is inversely proportional to the radius of curvature (r)

$$E_m \approx \frac{2V}{r \ln\left(1 + \frac{4d}{r}\right)}$$

Double the radius allows the applied voltage to be doubled and thus the power limit increase by 4X

$$P_{avg} = \frac{V_p^2}{2Z_0}$$

Power handling no longer limited by the radiators

Tiller or Quadrupole?

Comparing the Tiller to the Quadrupole

H/V ratio, bandwidth and circularity are all functions of the arm pitch

Comparing the Tiller to the Quadrupole

H/V ratio, bandwidth and circularity are all functions of the arm pitch

Comparing the Tiller to the Quadrupole

H/V ratio, bandwidth and circularity are all functions of the arm pitch

Common Misconceptions FM and Vertical Polarization

- "The vertical component is our bread and butter for mobile reception"
- "Vertical polarization has less ground attenuation then horizontal polarization"
- "Horizontal polarization is totally filtered out near metal ground planes"

FM and the Horizontal Polarization Component

In the past vertical polarization was FM's "bread and butter"

Antenna of choice – $1/4\lambda$ mast

- Omni-directional VPOL
- Inexpensive
- Uncomplicated
- But..
 - Ugly
 - Subject to damage

Possible Automotive Antenna Placement

- Shift away from the traditional quarter wavelength mast antenna towards more aesthetically pleasing antennas using conformal and hidden solutions
- Integrated printed antennas into plastic body parts
- In glass antennas

- Very little vertical aperture
- Reception quality depending more and more on the horizontally polarized component

Propagation Near the Ground

- Surface waves are not only subject to the same attenuation factors as space waves but also suffers ground losses
 - Ohmic resistive losses from the conductive earth

1941 – Ken Norton formulated the attenuation factor for ground wave attenuation

$$f_E(p,b) = \left| 1 + i \sqrt{\pi p e^{ib}} e^{-pe^{ib}} \frac{2}{\sqrt{\pi}} \int_{-i\sqrt{p}e^{ib}}^{\infty} e^{-x^2} dx \right|$$

$$p = \pi \frac{d}{\lambda} \frac{\cos^2\left(tan^{-1}\frac{\varepsilon_r}{\chi}\right)}{x\cos\left(tan^{-1}\frac{\varepsilon_r-1}{\chi}\right)} \qquad b = 2\left(tan^{-1}\frac{\varepsilon_r}{\chi}\right) - \left(tan^{-1}\frac{\varepsilon_{r-1}}{\chi}\right) \quad \text{Vertical Polarization}$$

$$p = \pi \frac{d}{\lambda} \frac{x}{\cos\left(\tan^{-1}\frac{\varepsilon_r - 1}{x}\right)} \qquad b = \pi - \left(\tan^{-1}\frac{\varepsilon_r - 1}{x}\right) \qquad \text{Horizontal Polarization}$$

$$x = \frac{\sigma}{\omega \varepsilon_0}$$

Propagation Near the Ground

Ground Attenuation Horizontal Polarization / Vertical Polarization

At FM, horizontal and vertical polarization attenuate equally from the earth's surface ohmic losses

Horizontal Polarization Near a Perfect Ground Plane

A boundary condition used to solve Maxwell's equations states, "The E-Field tangent to a ground plane is zero".

n X E = 0

Summarizing the importance of FM Horizontal Polarization Dielectric

- Newer automobiles depending more on the horizontal polarization
- Ground attenuation is the same for both horizontal and vertical polarization at FM frequencies
- Horizontal ground planes limit the horizontally polarized antennas performance
 - Makes the amount of available horizontal polarization and the circularity even more important

Power / Voltage Handling - Ring vs. Tiller

Tiller design has always had a power / voltage handling advantage

Single tap point - Unpressurized

Introducing the DCRU - High power FM Bay

Power / Voltage Handling - Ring vs. Tiller

The features of the DCRU eliminate the Tiller's power / voltage handling advantage

Both designs limited by the pressurized tee junction

DCRU- Power Handling Capability

DC Hi-Pot testing the DCRU feed point design

DCRU Power / Voltage Rating

For this example:

DCRM can accommodate 2 stations with IBOC DCRS can accommodate 4 stations with IBOC DCRU can accommodate 8 stations with IBOC

Based on:

DC Hi-Pot testing 8 bay antenna array

Power / station 20kW 1BOC level -14dBc PAPR 3dB VSWR 2:1

$$V_{Peak\ RF} = .7 * V_{DC}$$

$$C_{VSWR} = \frac{2 * VSWR}{VSWR + 1}$$

$$V_{p-analog} = \sqrt{2Z_0 P_{avg-analog}}$$

$$V_{p-IBOC} = \sqrt{2Z_0 P_{avg-IBOC} PAPR}$$

$$SF = \frac{V_{peak\;RF}}{\left(\sum_{1}^{n} V_{p-analog} + \sum_{1}^{n} V_{p-IBOC}\right)C_{VSWR}}$$

Conclusion

- Quadrupole FM antennas offer superior circularity and bandwidth while maintaining equal horizontal and vertical pattern performance
- Advances in automotive antenna design rely on the horizontal polarization for FM reception
- The introduction of the new DRCU FM antenna provides equivalent power handling as tiller designs for high power multi-station operation with the benefit of quadrupole pattern and bandwidth performance

Questions?

TRUSTED FOR DECADES, READY FOR TOMORROW.

